Tag Archives: geodynamo

AGU Education Demonstrations

I recently got back from the American Geophysical Union meeting in San Francisco and wanted to try out adding some videos to the blog. The education section had a poster session during the last day of the conference that was on collection of data in real time in the classroom. Some of the demonstrations were very interesting and I thought it would be fun to share here. I didn't have my good HD camera at the conference, but I did have my iPhone.

That being said these are rather rough videos. If you think these are interesting be sure to say so and I'll try to take some better camera gear to conferences!

Demo 1: Mantle Convection

Using a set of cross driven PVC rollers Gary Glesener (UCLA) demonstrated a basic, historical plate tectonic model with his classroom Griggs apparatus. I got most of the explanation and demonstration on video.

Demo 2: Internal Waves

This demo used a small tank with saline water in the bottom and a layer of fresh water floating on top to demonstrate the standing waves setup at the density contrast. Then with two conductivity probes they show the passing wave and phase offset to allow students to calculate quantities such as the Brunt–Väisälä number. Again I think that most of the explanation is on the video. This is one of many demos from Dr. Jonathan Aurnou's group at the UCLA SpinLab.

Demo 3: The Geodynamo

The last demonstration was very interesting, but sadly I only have the explanation on video. Luckily I have video of a similar apparatus I built years ago to supplement! The idea was to show how rotating fluids in the Earth can create our geomagnetic field. That is rather difficult to show, but the inverse is pretty easy. It is also the basis for magneto-hydrodynamic propulsion. Below is the video of the project being explained and a video of my apparatus from many years ago. This is another UCLA SpinLab demo!

My old version of a similar idea:


UCLA Modeling Educational and Demonstrations Laboratory
SpinLab YouTube Channel
SpinLab Webpage